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Abstract. Hopfidd-like neural networks with spatially organized data M studied by a mean- 
field theory. The intemal stNcture of the data is described by a matrix C whose elements 
C;, M equal to the correlation between two pixels. i and j ,  of any input p5tem. The model 
considered here is described by the mauix E in which the pixel-pixel c-lation is the same 
for all pairs of pixels and is equal to f r .  The sta~&tical properties of the model depend on three 
paramem: the reduced number of the stored palterns a, the temperaolre T and the reduced 
number of svengul coml5ions of the pixels A. T k  phase diagram in the space of parameten A 
and II 5 temperature T = 0 is obtained. The network can rettieve patterns at T = 0 for II c ec, 
where mc 2 0.14 as for the usual Hopfield ne& nenvod; but there is a new transition line 
above which a new local minimum of the fm energy arises. This minimum wmponds  to a 
ferromagnetic ordering of the neurons. There i i  another additional minimum (between the next 
two lines) that corresponds 10 mixed ordering. We also find the region where the ferromagnetic 
state becomes the gmund m of the system. 

1. Introduction 

Most real life applications of neural networks deal with spatially organized data. For mainly 
technical reasons, the main results for neural networks (e.g. working as associative memory, 
fast parallel processing learning and relearning, robustness against degradation [I]) were 
obtained in the absence of any spatial structure of the inputs. 

Among recent studies of neural networks there has been an increase of interest in 
the influence of the internal smcture of spatially organized data on the capacity and the 
retrieval quality. Thus, the properties of the perceptron-like neural networks supplied with 
the spatial correlations of data have been investigated in [3], where, using the classic method 
introduced by Gardner in [2] ,  it was shown that the storage properties of the neural network 
only depend on the eigenvalues of the correlation matrix C, whose elements, C,, , give the 
correlation between the components i and j of the pattem tfi. In particulx, the critical 
capacity at zero stability always gives LU, = 2. 

A fully connected neural network which stores self-correlated patterns from an auto- 
associative standpoint has been considered in [3]. The results indicate that the storage 
capacity increases but the total quantity of information seems to decrease. The synaptic 
weights exhibit a structure richer than the one that they have for uncorrelated patterns. 
In addition to the usual O ( 5 )  fluctuation weights, there is a O(1) self-averaging 
and ferromagnetic background. n e s e  short-range couplings take advantage of spatial 

0305-4470/95/133733X19,5~ @ 1995 IOP Pubhhing Ltd 3733 



3734 

correlations of the input patterns to enhance the local fields, without affecting the retrieval 
performances of large networks too much. 

In this paper, we focus on the effects of such spatial organizations of the input patterns 
on the properties of Hopfield-like neural network [5,7]. We consider,the fully connected 
network consisting of N Ising spins [q}, (i = 1,. . . , N )  and symmetric couplings .Iij 
that are supposed to store p pattems {e:]. The internal structure of data is given by the 
correlation matrix 2. whose elements Cij are the same for all the pairs i, j and are equal 

The model is studied in the limit when both N + cc and p + cc, while the parameters 
01 = 5 and A remain finite. Such systems can be described by a Hamiltonian and could 
be studied in terms of the usual statistical mechanics. The specific form of the matrix 2. 
(Cjj = $Vi, j) does not correspond to any physical situation, but this model is convenient 
for studying the influence of the correlation on the retrieval quality of the neural networks 
because it is solvable and this solution is simple and not trivial. 

On the other hand, a model with a more realistic correlation matrix C may be reduced 
to our model as a first approach of the mean-field approximation, like the mean-field 
approximation for usual fenomagnetic systems 161. 

The main problem that we attempt to solve is the determination of the suucture of the 
free-energy landscape, i.e. we are interested in the local minima and the ground states of 
the system. 

The plan of the paper is the following. In section 2 we inioduce the model and discuss 
the probability measure that should describe the model. In the section 3 we obtain the mean- 
field equations of the model. The phase diagram of the system in the space parameters A and 
01, at T = 0, is obtained by a numerical solution of the saddle-point equations in section 4. 

2. The model 

The model consists of N Ising spins U; (i = 1, . . . , N )  and is described by the Hamiltonian 
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to +. 

The interaction matrix is taken to be of the form 

where ( p  (p  = 1,. . . , p )  are quenched patterns. 
We-choose a probability distribution for the pattems as follows: 

((#)=.o Vi ~p 

((53°C;)) = S w ( S i j  + Cij) Wi, j )  V(P,  V )  
(3) 

where the angular brackets denote an average over this distribution. 
The first equation (1) means that no external bias is taken, a situation which occurs, 

for example, when a pattern and its opposite are drawn with the same probability. The 
Kronecker symbol in (3) implies that different pattems are chosen independently of each 
other. 

The matrix C contains the information about the correlations inside one pattern $p,  and 
we choose it to obey the following requirements: 

- 

A c.. - - Vi, j. (4) 11 - N 
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We can construct a probability distribution satisfying the above conditions using the 
following argument. It is well known that any probability measure may be described by its 
characteristic function. A characteristic function and its probability measure are connected 
by the Fourier transformation 

and the correlation function is given by 

In order to satisfy the conditions (3) we can choose the following characteristic function: 

3. The mean-field equation 

The free energy of the model is calculated by using the replica method approach 

where ((. . .)) means the averaging over the random e," and ' ' 

is the replica partition function. Introducing the fields mf one gets 

where 

Here we follow the standard calculations similar to those of the usual Hopfield model 171. 
We assume that only the overlap with pattem number one (i.e. - 6 ' )  condenses in the N + 00 

limit and therefore we do the rescaling 

mal + 
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After averaging over the random variables tr (p # 1) (see appendix A) we have 
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where 

a b  if a # b  Qab = - U; mi 
(12) N i=l  

Q.6 = 0 otherwise 
and 

(13) 
l N  

N i=l 
x, = -xu; 

dt&,dmDQD&Cexp 
e 

n 

(14) 

P 

+p c$i!) - 4 - Bf- b& - A b f 2 ) a b m b p  
i ab p=2 

X n a 8 (... - U;) n s ( N Q a b  - ‘$U!))) 
a c b  5’ 

where the matrix Q has been defined by (12) and the matrix x̂ x has been defined as follows: 
(&)ab = X&b. 

Introducing the conjugate fields Rab and y. for the Qrrb and the x,, respectively, and 
integrating over moll (with p > 1) 

~ , D R D Q D Y D ~  - 

({Z” )) = 1 Dm DlD&D& D Q  - exp( - p N n f )  
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where f is the mean-field free energy of the model 

We have made the following rescaliigs: 

Rob + iC@'R,& yo --f iC@y,. 
Here mal is the overlap with the condensed pattem 

and Qab is the spin-glass parameter 

Rob gives the average value of the noisy overlaps with non-condensed pattems 

x. is the parameter of 'ferromagnetic' ordering: 

Assuming replica symmetry one takes 

Rob = r a # b  
Qab=4  a # &  
m, = m  Yo = Y x. = x .  

Then taking the limit n + 0 after some algebra one gets 

Ax 
y =  l - j 3 ( l - q )  
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4. The phase diagram 

At zero temperature (17x21) can be reduced to 

A X  =- Ax 
y =  l - j ( l - q )  1 - c  

q + Ax2 

11 - B(1 - 9112 
- 1 +Ax2  -- r =  

where 
11 - Cl* 

Introducing 
m Y U=- and U = - 
& A& 

and writing c, x and r as a function of U ,  U one gets 

where 

Ex@, U) = iexp[-$(u + 01Au)~] + $exp[-$(u - f fAv)’ ] .  (32) 
These equations always have a solution m = U = x = U = 0 which corresponds 

to a spin-glass state with no macroscopic overlap with the learned patterns and non-zero 
spin-glass order parameter q given by (24)-(26) (with m = x = y = 0). 

It is easy to see that if U = 0 equation (29) is automatically satisfied and (28) is reduced 
to an equation for the usual Hopfield model. Thus at 01 < cr, = 0.138 and any A the solution 
with m different from 0 appears and it corresponds to the retrieval state. At (Y = 01, there 
is a finite jump of the value of m from 0 to m # 0. 

Instead, when U = 0 equation (28) is automatically satisfied and the simple analysis 
of (29) gives the line A f e r ( f f )  = above which the solution with m = 0 and x # 0 
exists. This solution corresponds to the ferromagnetic state when the average site spin 
magnetizations (U;) have non-zero value x. The line h,&) is the line of the second phase 
transition. 

The numerical solution of (28) and (29) shows that in the region restricted by the lines 
h,+ and A,? the solution with m # 0 and x # 0 appears. This solution corresponds to 
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the mixed state in which both the macroscopic overlap with the learned patterns and the 
parameter of ferromagnetic ordering are different from zero. 

The phase diagram in the space of the parameters A and CY is shown in figure 1. In the 
region marked by ‘S’ the only stable state is the spin-glass state. In the region ‘S + F’ we 
have both the spin-glass state and the ferromagnetic state. In the region ‘S + R the spin- 
glass state and the retrieval state exist. The other denotations have analogous meanings, 
where ‘ M  denotes the mixed state. Thus in a region marked by ‘S + R + F + M all the 
phases are present. 

The nature of the ground state of the system is shown in figure 2. In the region markd 
by ‘S’ the spin-glass state is the global minimum, in the region ‘F’ the femmagnetic state 
is the global minimum. In  the region marked by ‘R the retrieval state the global minimum. 

5. Conclusion 

We studied a simple Hopfield-like neural network model whose data have an internal 
structure that is described by weak long-range correlations between the components of 
the patterns. We observe that an effective ferromagnetic interaction arises in’the system of 
q i n s  due to this correlation. The effective interaction gives three new phase transition lines 
in the plane Oorh, so the plane is divided into regions where beside the usual spin-glass and 
retrieval minima we have a new ferromagnetic and mixed minima. 
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It is well known that systems with weak long-range interactions do not have any regions 
with strong fluctuations and usually, for this reason, they are exactly solvable. The system 
considered above confirms these observations. 

An interesting question arises from this point of view: if we study a neural network 
with short-range correlations (for example a neural network on a ZD square lattice where 
the correlation between two elements is different from 0 if the elements are the nearest 
neighbours) we certainly have to deal with a partition function on the ZD ferromagnetic 
king model, that presents a region of its parameters in which critical behaviour with strong 
fluctuations arises. The question mentioned above is: is this critical behaviour relevant 
for the properties of neural networks? Moreover, does this region of parameters of neural 
networks exists where strong fluctuations play the crucial role? 

A detailed study of these questions will be reported elsewhere. 
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Appendix 

Here is the derivation for (9): 

The explicit computations are the following: 
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Then we have 

References 

[I] Amit D J 1989 Modelling Brain Function (New Yo&. Cambridge University Press) 
[2] Gardner E 1988 1. Phys. A: Ma& Gen 21 257 

131 Monasson R 1992 J. Phys. A: Mafh Gen. 25 3701 
141 Monasson R 1993 J. Physique I 3  I141 
[5] Hopfield J J 1982 Pmc. Not1 Acnd Sei.. USA 79 2554 
[6] Stanley H E 1971 Introduction to Phose Transition and Criticd Phenomenn (Oxford Clatendon) 
[7] Amit D I. Gnlfreund H and Sompolinsky H 1987 Pkys. Rev. A 35 2293 

Gardm E and Derrida B 1988 J. Phys. A: Mafh. Gen. 25 271 


